From Mass Digitization to Mass Content Enrichment

Frédéric Beaugendre, Michel Merten, Jean De Gyns: MEMNON
Stéphane Bayot: SONUMA

BAAC conference, 4 October 2012, Helsinki
Sonuma

- Created in 2009 by Wallonia government, RTBF & Wallonia/Brussels Community government
- Private company with capital of €40Mio (24Mio cash)
- SONUMA owns RTBF patrimonial archives from 1930 to end 2007.
- 120,000 hours of TV and Radio archives
- SONUMA preserves, digitizes & discloses archives
- Started from scratch
Sonuma

• Effective and global approach
 – Knowledge of the collection (inventories, dictionnaries…)
 – Needs analysis and demands
 – Public tendering procedure

• Selection of the skilled partners
 – Restauration & digitization
 – Automatic indexation, metadata management

• 15 FTE divided in 4 departments
 – Operational, Editorial, IT, Sales
Digitization milestones

- **Nov. 2010 – April 2012**: 23,000 hours radio news (VHS)
- **Febr. 2011 – March 2013**: 30,000 hours (BETA)
- **July 2011 – October 2011**: 10,000 hours (DAT)
- **Sept. 2011 – July 2012**: 5,000 hours (1’)
- **Jan. 2012 – July 2012**: tenders for 6,000 hours films & 15,000 hours audio magnetic tapes
Metadata approach

- Metadata harvesting
 - Databases from archives, newsroom, playout room & web
 - Paper archives from archives, communication department, newsroom

- First level of indexation asap
 - Integration of electronic metadata in one DB
 - Scanning and OCR of thousands pages
 - Automatic indexation solutions
 - Option in the first tenders: VHS & BETA
VHS

- 23,000 hours of radio news between 1992 to 2002
- Time slots automatically recorded (VHS scheduler)
- 8 hours /VHS (LP)
- Date and hour of broadcasting recorded on the video track
- Texts of the anchorman and the journalists exported from the newsroom system

Sonuma’s demand:
- Segmentation based on the video track informations: one file by recording,
- Text alignment on the audio track
VHS

- **Supports**
 - Inventory of almost 3000 VHS
 - Idsonuma => bar code
 - Date and hour of broadcasting of the first recording

- **Metadata**
 - Import of newsroom data (journalists texts) in the Sonuma database
 - Scripts (filters) to detect and delete « useless informations » in the journalists texts who might reduce the alignment ‘s quality
VHS

- Export in a xml file of all metadata needed for the alignment
- Xml by FTP

- Transport to Memnon
Overview of Memnon Archiving Services

• A European leader in the digitization, migration, and semi-automated indexation and documentation of audiovisual archives, with facilities in:
 – Belgium
 – Also providing “in house” services (set-up, media architecture, training, project-management, metadata issues ... on site)
• Involved in the digitization of more than 700,000 hours of audiovisual archives of most analog and digital formats.
• Large scale audiovisual digitization and migration at a very competitive price through strong project management and optimized workflows
• Expertise in database and metadata management
• Memnon has participated into many projects around audiovisual archives and education
• Memnon has developed tools for automated content enrichment - IPI manager
Large scale audiovisual digitization

Sound:
All types of carriers (tape, records, cassette, DAT, …)

Video:
All types of carriers (1inch, U-matic, Digit Beta, Beta SP, DVcam …)
How did Memnon approach the issue

• A Global Workflow
 – Automatize as most as possible the post-processing steps after digitization of medias
 ▪ Make the best use of existing metadata
 ▪ Implement automatic extraction algorithms
• House made OCR
 – Automatic extraction of the timecode embedded on the image
• Automatic text Alignment on audio
 – Filtering of metadata
 – Use of Speech Recognition technology for automatic alignment
 – 100% of alignment, if the text corresponds to the actual audio and length of the sentence exceeds 3 sec of audio
Dynamic OCR (1)

- OCR
 - Clean picture
 - Locate the digits
 - Match digit
Dynamic OCR (1)

• OCR
 – Clean the picture
 • Build a black and white version of the picture by using simple assumptions and features to isolate the digits.
 – Locate the digits
 • Scan trough the cleaned image to find areas which could contains digits. First start by scanning the rows and then isolate each area within each row.
 – Match digit
 • Compare the detected areas with some prebuild models to recover the digit. A high score of confidence is required to avoid false positives.
Dynamic OCR (2) : Clean & Locate

- Source image :

- Scan :

Result :
Dynamic OCR (3): Match the digit

- Models:

\[0123456789\]

- Matching Sample:

\[\text{Sample Image} \quad \text{Sample Image}\]
Text Alignment Algorithm

- Original XML associated to the tape:
 - Matching to the actual to be confirmed by the process
 - Associate file reference to be filled
 - Segmentation of programs according to the OCR match to be processed within the workflow
 - Timecode of each Headline to be filled

```
<TexteJournaliste>
  <desannonce>
    <Sujet>
      <Rang>4</Rang>
      <NumeroFichier>*** A DETERMINER A LA SYNCHRONISATION
                    ***</NumeroFichier>
      <RelTcIn>*** A DETERMINER A LA SYNCHRONISATION ***</RelTcIn>
    </Sujet>
  </TexteJournaliste>

<Titre>BELGIQUE/JUDICIAIRE/FAFA JONATHAN</Titre>

<chapeau>
  procureur ______________ Voila
deux ans que le petit Jonathan mourait sous les coups portes par
l'ami de sa mere. Ce petit garcon avait trois ans. Ce drame
s'etait deroule a Obourg, dans la region montoise. Il avait deja
ete jugé en correctionnelle. Il a ete rejugé en appel. Attention,
pour la justice, il peut y avoir de serieuses differences d'une
affaire d'enfant battu a l'autre. Jean Paul procureur. bande 1'30''
fin: mais aussi d'une certaine indifferance</chapeau>
```

Original XML
Text Alignment Algorithm

- Construction of a grammar consisting of “parts-of-speech” from the transcription:
 - part-of-speech starts from a non-grammatical word to the next non-grammatical word;

Original XML

Grammar Construction

Headline1_1 – Voila deux ans
Headline1_2 – petit Jonathan
Headline1_3 – mourrait sous les coups
Headline1_4 – porté par l’ami
Headline1_5 – petit garçon
Headline1_6 – avait trois ans
Headline1_7 – drame s’était déroulé
Headline1_8 – Obourg dans la région
Headline1_9 – avait déjà été jugé
Headline1_10 – rejugé en appel
Text Alignment Algorithm

- Each item of the grammar is processed through a phonetizer;
- These parts-of-speech chunks is used for recognition in the audio files;
- A post-processing algorithm detects the occurrence of 3 consecutive recognized items belonging to the same headline within a window of 20 sec;

Original XML Grammar Construction Phonetization

Headline1_1 – Voila deux ans Headline1_1 – vwallaaddeuzzan
Headline1_2 – petit Jonathan Headline1_2 – ppeettiijjoonnaattan
Headline1_3 – mourrait sous les cou Headline1_3 – mmuurraaissuulleekkuu
Headline1_4 – porté par l’ami Headline1_4 – ppOOrrtteepaarrllaammii
Headline1_5 – petit garçon Headline1_5 – ppeuttiiggaarrrson
Headline1_6 – avait trois ans Headline1_6 – aavvEEttrtroizzan
Headline1_7 – drame s’étais déroulé Headline1_7 – ddrraammsseettEEdddeerrruulllee
Headline1_8 – Obourg dans la région Headline1_8 – oobbuuurrddanllaarreeGGjjon
Text Alignment Algorithm

- Alignment to the audio file is computed using the corresponding time codes of the recognized parts-of-speech
- The correct file reference is filled in

Original XML → Grammar Construction → Phonetization → Alignment
Other tools for automated enrichment by Memnon

- **Implemented in Bold**, *on the roadmap in italics*

- « Low level » indexation: Distinct Audio & Video algorithms
 - Audio:
 - Acoustic segmentation & classification
 - Speaker segmentation, clustering, tracking & recognition
 - Large vocabulary speech recognition
 - Jingle recognition
 - Music fingerprinting
 - Silence detection
 - …
 - Video:
 - Video shot detection
 - Face recognition
 - Background recognition
 - Caption recognition
 - Logo recognition
 - …

- « High level » structuration
 - Combination of several low level results to:
 - Increase the confidence: e.g. face recognition + speaker recognition results
 - Allow a high level structuration of the content: i.e. use of speech recognition results to extract topics: « in this segment, we are talking about the Olympics, and in this following one, we are talking about the war in Irak…"
Import into the Sonuma’s DAM
Conclusion: Expected time savings versus manual work

- 23000 hours of radio news programs
- Several hundred thousand of anchorman texts available in a DB
- Manually segmentation of 23000 hours of audio files => hard job !!!
- Manually texts alignment => unrealistic !!!
- Unjustifiable costs (« ...and only for radio programs? »)
- Made possible using speech recognition tools
- Excellent indexation level given the metadata provided. Enough criterias to find assets in the DAM (Program title, date and hour of broadcasting, texts, journalists names...)
- Acceptable costs ...even for radio programs!
End of the presentation

Thank you for your attention